1.Anti-Mullerian Hormone Levels in the Follicular Fluid of the Preovulatory Follicle: A Predictor for Oocyte Fertilization and Quality of Embryo.
Jee Hyun KIM ; Jung Ryeol LEE ; Hye Jin CHANG ; Byung Chul JEE ; Chang Suk SUH ; Seok Hyun KIM
Journal of Korean Medical Science 2014;29(9):1266-1270
This prospective study investigated the relationship between anti-Mullerian hormone (AMH) level in the follicular fluid (FF) and the quality of the oocyte and embryo. A total of 65 FF samples from 54 women were included in this study. FF was collected from the largest preovulatory follicle sized> or =20 mm of mean diameter from each ovary. Samples were divided into 3 groups according to the FF AMH levels: below the 33th percentile (low group, FF AMH<2.1 ng/mL, n=21), between the 33th and the 67th percentile (intermediate group, FF AMH=2.1-3.6 ng/mL, n=22), and above the 67th percentile (high group, FF AMH>3.6 ng/mL, n=22). The quality of the ensuing oocytes and embryos was evaluated by fertilization rate and embryo score. FF AMH levels correlated positively with the matched embryo score on day 3 after fertilization (r=0.331, P=0.015). The normal fertilization rate was significantly lower in the low group than in the intermediate group (61.9% vs. 95.5% vs. 77.3%, respectively, P=0.028). Our results suggest that the FF AMH level could be a predictor of the ensuing oocyte and embryo quality.
Adult
;
Anti-Mullerian Hormone/*analysis
;
Embryo, Mammalian/*cytology
;
Female
;
Fertilization in Vitro
;
Follicular Fluid/*metabolism
;
Humans
;
Oocytes/cytology
;
Prospective Studies
2.Anti-Mullerian Hormone Levels in the Follicular Fluid of the Preovulatory Follicle: A Predictor for Oocyte Fertilization and Quality of Embryo.
Jee Hyun KIM ; Jung Ryeol LEE ; Hye Jin CHANG ; Byung Chul JEE ; Chang Suk SUH ; Seok Hyun KIM
Journal of Korean Medical Science 2014;29(9):1266-1270
This prospective study investigated the relationship between anti-Mullerian hormone (AMH) level in the follicular fluid (FF) and the quality of the oocyte and embryo. A total of 65 FF samples from 54 women were included in this study. FF was collected from the largest preovulatory follicle sized> or =20 mm of mean diameter from each ovary. Samples were divided into 3 groups according to the FF AMH levels: below the 33th percentile (low group, FF AMH<2.1 ng/mL, n=21), between the 33th and the 67th percentile (intermediate group, FF AMH=2.1-3.6 ng/mL, n=22), and above the 67th percentile (high group, FF AMH>3.6 ng/mL, n=22). The quality of the ensuing oocytes and embryos was evaluated by fertilization rate and embryo score. FF AMH levels correlated positively with the matched embryo score on day 3 after fertilization (r=0.331, P=0.015). The normal fertilization rate was significantly lower in the low group than in the intermediate group (61.9% vs. 95.5% vs. 77.3%, respectively, P=0.028). Our results suggest that the FF AMH level could be a predictor of the ensuing oocyte and embryo quality.
Adult
;
Anti-Mullerian Hormone/*analysis
;
Embryo, Mammalian/*cytology
;
Female
;
Fertilization in Vitro
;
Follicular Fluid/*metabolism
;
Humans
;
Oocytes/cytology
;
Prospective Studies
3.Mitochondrial and DNA damage in bovine somatic cell nuclear transfer embryos
In Sun HWANG ; Hyo Kyung BAE ; Hee Tae CHEONG
Journal of Veterinary Science 2013;14(3):235-240
The generation of reactive oxygen species (ROS) and subsequent mitochondrial and DNA damage in bovine somatic cell nuclear transfer (SCNT) embryos were examined. Bovine enucleated oocytes were electrofused with donor cells and then activated by a combination of Ca-ionophore and 6-dimethylaminopurine culture. The H2O2 and .OH radical levels, mitochondrial morphology and membrane potential (DeltaPsi), and DNA fragmentation of SCNT and in vitro fertilized (IVF) embryos at the zygote stage were analyzed. The H2O2 (35.6 +/- 1.1 pixels/embryo) and .OH radical levels (44.6 +/- 1.2 pixels/embryo) of SCNT embryos were significantly higher than those of IVF embryos (19.2 +/- 1.5 and 23.8 +/- 1.8 pixels/embryo, respectively, p < 0.05). The mitochondria morphology of SCNT embryos was diffused within the cytoplasm. The DeltaPsi of SCNT embryos was significantly lower (p < 0.05) than that of IVF embryos (0.95 +/- 0.04 vs. 1.21 +/- 0.06, red/green). Moreover, the comet tail length of SCNT embryos was longer than that of IVF embryos (515.5 +/- 26.4 microm vs. 425.6 +/- 25.0 microm, p < 0.05). These results indicate that mitochondrial and DNA damage increased in bovine SCNT embryos, which may have been induced by increased ROS levels.
Animals
;
Apoptosis
;
Caspase 3/metabolism
;
Cattle
;
Colorimetry/veterinary
;
Comet Assay/veterinary
;
DNA Damage
;
DNA, Mitochondrial/genetics
;
DNA, Mitochondrial/metabolism
;
Embryo Transfer/veterinary
;
Embryo, Mammalian/cytology
;
Embryo, Mammalian/embryology
;
Fertilization in Vitro/veterinary
;
In Situ Nick-End Labeling/veterinary
;
Membrane Potential, Mitochondrial
;
Microscopy, Confocal/veterinary
;
Microscopy, Fluorescence/veterinary
;
Mitochondria/metabolism
;
Nuclear Transfer Techniques/veterinary
;
Reactive Oxygen Species/metabolism
4.Cloned foal derived from in vivo matured horse oocytes aspirated by the short disposable needle system
Wonyou LEE ; Kilyoung SONG ; Inhyung LEE ; Hyungdo SHIN ; Byeong Chun LEE ; Seongchan YEON ; Goo JANG
Journal of Veterinary Science 2015;16(4):509-516
Transvaginal ultrasound-guided follicle aspiration is one method of obtaining recipient oocytes for equine somatic cell nuclear transfer (SCNT). This study was conducted: (1) to evaluate the possibility of oocyte aspiration from pre-ovulatory follicles using a short disposable needle system (14-G) by comparing the oocyte recovery rate with that of a long double lumen needle (12-G); (2) to investigate the developmental competence of recovered oocytes after SCNT and embryo transfer. The recovery rates with the short disposable needle vs. the long needle were not significantly different (47.5% and 35.0%, respectively). Twenty-six SCNT embryos were transferred to 13 mares, and one mare delivered a live offspring at Day 342. There was a perfect identity match between the cloned foal and the cell donor after analysis of microsatellite DNA, and the mitochondrial DNA of the cloned foal was identical with that of the oocyte donor. These results demonstrated that the short disposable needle system can be used to recover oocytes to use as cytoplasts for SCNT, in the production of cloned foals and for other applications in equine embryology
Animals
;
Cloning, Organism/veterinary
;
DNA, Mitochondrial/genetics
;
Embryo Transfer/veterinary
;
Embryo, Mammalian
;
Female
;
Horses
;
Microsatellite Repeats
;
Needles/veterinary
;
Nuclear Transfer Techniques/veterinary
;
Oocyte Retrieval/veterinary
;
Ovarian Follicle/cytology
;
Pregnancy
5.TDAG51 deficiency promotes oxidative stress-induced apoptosis through the generation of reactive oxygen species in mouse embryonic fibroblasts.
Eui Soon PARK ; Juhyeok KIM ; Tae Uk HA ; Jong Soon CHOI ; Kwan Soo HONG ; Jaerang RHO
Experimental & Molecular Medicine 2013;45(8):e35-
Apoptosis has an important role in maintaining tissue homeostasis in cellular stress responses such as inflammation, endoplasmic reticulum stress, and oxidative stress. T-cell death-associated gene 51 (TDAG51) is a member of the pleckstrin homology-like domain family and was first identified as a pro-apoptotic gene in T-cell receptor-mediated cell death. However, its pro-apoptotic function remains controversial. In this study, we investigated the role of TDAG51 in oxidative stress-induced apoptotic cell death in mouse embryonic fibroblasts (MEFs). TDAG51 expression was highly increased by oxidative stress responses. In response to oxidative stress, the production of intracellular reactive oxygen species was significantly enhanced in TDAG51-deficient MEFs, resulting in the activation of caspase-3. Thus, TDAG51 deficiency promotes apoptotic cell death in MEFs, and these results indicate that TDAG51 has a protective role in oxidative stress-induced cell death in MEFs.
Animals
;
*Apoptosis
;
Embryo, Mammalian/*cytology
;
Fibroblasts/enzymology/*metabolism/pathology
;
Gene Expression Regulation
;
Intracellular Space/metabolism
;
Mice
;
Mitogen-Activated Protein Kinases/metabolism
;
NF-kappa B/metabolism
;
*Oxidative Stress/genetics
;
Reactive Oxygen Species/*metabolism
;
Signal Transduction
;
Transcription Factors/*deficiency/genetics/metabolism
6.Reactive oxygen species enhance differentiation of human embryonic stem cells into mesendodermal lineage.
Ae Ri JI ; Seung Yup KU ; Myung Soo CHO ; Yoon Young KIM ; Yong Jin KIM ; Sun Kyung OH ; Seok Hyun KIM ; Shin Yong MOON ; Young Min CHOI
Experimental & Molecular Medicine 2010;42(3):175-186
Recently, reactive oxygen species (ROS) have been studied as a regulator of differentiation into specific cell types in embryonic stem cells (ESCs). However, ROS role in human ESCs (hESCs) is unknown because mouse ESCs have been used mainly for most studies. Herein we suggest that ROS generation may play a critical role in differentiation of hESCs; ROS enhances differentiation of hESCs into bi-potent mesendodermal cell lineage via ROS-involved signaling pathways. In ROS-inducing conditions, expression of pluripotency markers (Oct4, Tra 1-60, Nanog, and Sox2) of hESCs was decreased, while expression of mesodermal and endodermal markers was increased. Moreover, these differentiation events of hESCs in ROS-inducing conditions were decreased by free radical scavenger treatment. hESC-derived embryoid bodies (EBs) also showed similar differentiation patterns by ROS induction. In ROS-related signaling pathway, some of the MAPKs family members in hESCs were also affected by ROS induction. p38 MAPK and AKT (protein kinases B, PKB) were inactivated significantly by buthionine sulfoximine (BSO) treatment. JNK and ERK phosphorylation levels were increased at early time of BSO treatment but not at late time point. Moreover, MAPKs family-specific inhibitors could prevent the mesendodermal differentiation of hESCs by ROS induction. Our results demonstrate that stemness and differentiation of hESCs can be regulated by environmental factors such as ROS.
Biological Markers/metabolism
;
Cell Differentiation/*drug effects
;
Cell Line
;
Cell Lineage/*drug effects
;
Cells, Cultured
;
Down-Regulation/drug effects
;
Embryo, Mammalian/cytology/drug effects/metabolism
;
Embryonic Stem Cells/*cytology/*drug effects/enzymology
;
Endoderm/*cytology/drug effects
;
Enzyme Activation/drug effects
;
Free Radical Scavengers/pharmacology
;
Humans
;
Mesoderm/*cytology/drug effects
;
Mitogen-Activated Protein Kinases/metabolism
;
Pluripotent Stem Cells/cytology/metabolism
;
Reactive Oxygen Species/metabolism/*pharmacology
;
Up-Regulation/drug effects