1.Longitudinal Intrinsic Brain Activity Changes in Cirrhotic Patients before and One Month after Liver Transplantation.
Yue CHENG ; Li Xiang HUANG ; Li ZHANG ; Ming MA ; Shuang Shuang XIE ; Qian JI ; Xiao Dong ZHANG ; Gao Yan ZHANG ; Xue Ning ZHANG ; Hong Yan NI ; Wen SHEN
Korean Journal of Radiology 2017;18(2):370-377
OBJECTIVE: To evaluate the spontaneous brain activity alterations in liver transplantation (LT) recipients using resting-state functional MRI. MATERIALS AND METHODS: Twenty cirrhotic patients as transplant candidates and 25 healthy controls (HCs) were included in this study. All patients repeated the MRI study one month after LT. Amplitude of low-frequency fluctuation (ALFF) values were compared between cirrhotic patients (both pre- and post-LT) and HCs as well as between the pre- and post-LT groups. The relationship between ALFF changes and venous blood ammonia levels and neuropsychological tests were investigated using Pearson's correlation analysis. RESULTS: In the cirrhotic patients, decreased ALFF in the vision-related regions (left lingual gyrus and calcarine), sensorimotor-related regions (left postcentral gyrus and middle cingulate cortex), and the default-mode network (bilateral precuneus and left inferior parietal lobule) were restored, and the increased ALFF in the temporal and frontal lobe improved in the early period after LT. The ALFF decreases persisted in the right supplementary motor area, inferior parietal lobule, and calcarine. The ALFF changes in the right precuneus were negatively correlated with changes in number connection test-A scores (r = 0.507, p < 0.05). CONCLUSION: LT improved spontaneous brain activity and the results for associated cognition tests. However, decreased ALFF in some areas persisted, and new-onset abnormal ALFF were possible, indicating that complete cognitive function recovery may need more time.
Ammonia
;
Brain*
;
Cognition
;
Fibrosis
;
Frontal Lobe
;
Hepatic Encephalopathy
;
Humans
;
Liver Transplantation*
;
Liver*
;
Magnetic Resonance Imaging
;
Motor Cortex
;
Neuropsychological Tests
;
Occipital Lobe
;
Parietal Lobe
;
Rabeprazole
;
Somatosensory Cortex
2.Endothelial Progenitor Cells Correlated with Oxidative Stress after Mild Traumatic Brain Injury.
Xintao HUANG ; Dahai WAN ; Yunpeng LIN ; Naizhao XUE ; Jiehe HAO ; Ning MA ; Xile PEI ; Ruilong LI ; Wenju ZHANG
Yonsei Medical Journal 2017;58(5):1012-1017
PURPOSE: Endothelial progenitor cells (EPCs) play a key role in tissue repair and regeneration. Previous studies have shown that infusion of human umbilical cord blood-derived endothelial colony-forming cells improves outcomes in mice subjected to experimental traumatic brain injury (TBI). However, the efficiency of cell transplantation is not satisfactory. Oxidative stress plays a significant role in the survival of transplanted cells following ischemic reperfusion injury. This observational clinical study investigated the correlation between the number of circulating EPCs and plasma levels of superoxide dismutase (SOD) and malonyldialdehyde (MDA). MATERIALS AND METHODS: Peripheral blood samples were collected from 20 patients with mild TBI at day-1, day-2, day-3, day-4, and day-7 post TBI. The number of circulating EPCs and the plasma levels of SOD and MDA were measured. RESULTS: The average of circulating EPCs in TBI patients decreased initially, but increased thereafter, compared with healthy controls. Plasma levels of SOD in TBI patients were significantly lower than those in healthy controls at day-4 post-TBI. MDA levels showed no difference between the two groups. Furthermore, when assessed on day-7 post-TBI, the circulating EPC number were correlated with the plasma levels of SOD and MDA. CONCLUSION: These results suggest that the number of circulating EPCs is weakly to moderately correlated with plasma levels of SOD and MDA at day-7 post-TBI, which may offer a novel antioxidant strategy for EPCs transplantation after TBI.
Animals
;
Brain Injuries*
;
Cell Transplantation
;
Clinical Study
;
Endothelial Progenitor Cells*
;
Humans
;
Malondialdehyde
;
Mice
;
Oxidative Stress*
;
Plasma
;
Regeneration
;
Reperfusion Injury
;
Superoxide Dismutase
;
Transplants
;
Umbilical Cord
3.Effect of a Novel Intracycle Motion Correction Algorithm on Dual-Energy Spectral Coronary CT Angiography: A Study with Pulsating Coronary Artery Phantom at High Heart Rates.
Yan XING ; Yuan ZHAO ; Ning GUO ; Cun Xue PAN ; Gulina AZATI ; Yan Wei WANG ; Wen Ya LIU
Korean Journal of Radiology 2017;18(6):881-887
OBJECTIVE: Using a pulsating coronary artery phantom at high heart rate settings, we investigated the efficacy of a motion correction algorithm (MCA) to improve the image quality in dual-energy spectral coronary CT angiography (CCTA). MATERIALS AND METHODS: Coronary flow phantoms were scanned at heart rates of 60–100 beats/min at 10-beats/min increments, using dual-energy spectral CT mode. Virtual monochromatic images were reconstructed from 50 to 90 keV at 10-keV increments. Two blinded observers assessed image quality using a 4-point Likert Scale (1 = non-diagnostic, 4 = excellent) and the fraction of interpretable segments using MCA versus conventional algorithm (CA). Comparison of variables was performed with the Wilcoxon rank sum test and McNemar test. RESULTS: At heart rates of 70, 80, 90, and 100 beats/min, images with MCA were rated as higher image scores compared to those with CA on monochromatic levels of 50, 60, and 70 keV (each p < 0.05). Meanwhile, at a heart rate of 90 beats/min, image interpretability was improved by MCA at a monochromatic level of 60 keV (p < 0.05) and 70 keV (p < 0.05). At a heart rate of 100 beats/min, image interpretability was improved by MCA at monochromatic levels of 50 keV (from 69.4% to 86.1%, p < 0.05), 60 keV (from 55.6% to 83.3%, p < 0.05) and 70 keV (from 33.3% to 69.3%, p < 0.05). CONCLUSION: Low-keV monochromatic images combined with MCA improves image quality and image interpretability in CCTAs at high heart rates.
Angiography*
;
Coronary Vessels*
;
Heart Rate*
;
Heart*
;
Tomography, X-Ray Computed
4.Plasma Macrophage Migration Inhibitory Factor and CCL3 as Potential Biomarkers for Distinguishing Patients with Nasopharyngeal Carcinoma from High-Risk Individuals Who Have Positive Epstein-Barr Virus Capsid Antigen-Specific IgA.
Ning XUE ; Jian Hua LIN ; Shan XING ; Dan LIU ; Shi Bing LI ; Yan Zhen LAI ; Xue Ping WANG ; Min Jie MAO ; Qian ZHONG ; Mu Sheng ZENG ; Wan Li LIU
Cancer Research and Treatment 2019;51(1):378-390
PURPOSE: The purpose of this study was to identify novel plasma biomarkers for distinguishing nasopharyngeal carcinoma (NPC) patients from healthy individuals who have positive Epstein-Barr virus (EBV) viral capsid antigen (VCA-IgA). MATERIALS AND METHODS: One hundred seventy-four plasma cytokines were analyzed by a Cytokine Array in eight healthy individuals with positive EBV VCA-IgA and eight patients with NPC. Real-time polymerase chain reaction, Western blotting, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry were employed to detect the expression levels of macrophage migration inhibitory factor (MIF) and CC chemokine ligand 3 (CCL3) in NPC cell lines and tumor tissues. Plasma MIF and CCL3 were measured by ELISA in 138 NPC patients, 127 EBV VCA-IgA negative (VN) and 100 EBV VCA-IgA positive healthy donors (VP). Plasma EBV VCA-IgA was determined by immunoenzymatic techniques. RESULTS: Thirty-four of the 174 cytokines varied significantly between the VP and NPC group. Plasma MIF and CCL3 were significantly elevated in NPC patients compared with VN and VP. Combination of MIF and CCL3 could be used for the differential diagnosis of NPC from VN cohort (area under the curve [AUC], 0.913; sensitivity, 90.00%; specificity, 80.30%), and combination of MIF, CCL3, and VCA-IgA could be used for the differential diagnosis of NPC from VP cohort (AUC, 0.920; sensitivity, 90.00%; specificity, 84.00%), from (VN+VP) cohort (AUC, 0.961; sensitivity, 90.00%; specificity, 92.00%). Overexpressions of MIF and CCL3 were observed in NPC plasma, NPC cell lines and NPC tissues. CONCLUSION: Plasma MIF, CCL3, and VCA-IgA combination significantly improves the diagnostic specificity of NPC in high-risk individuals.
Biomarkers*
;
Blotting, Western
;
Capsid*
;
Cell Line
;
Chemokine CCL3
;
Cohort Studies
;
Cytokines
;
Diagnosis
;
Diagnosis, Differential
;
Enzyme-Linked Immunosorbent Assay
;
Herpesvirus 4, Human*
;
Humans
;
Immunoglobulin A*
;
Immunohistochemistry
;
Macrophages*
;
Plasma*
;
Real-Time Polymerase Chain Reaction
;
Sensitivity and Specificity
;
Tissue Donors